Tooele County Lesson Plan Template

Reflect on how the lesson was received by the students:

Unit 1A Reteach

Multiplying complex numbers.

- Multiplication is multiplication. And i behaves like x.

(心)
(4)

Unit 1A Reteach

Multiplying complex numbers.

- Multiplication is multiplication. And i behaves like x.

(0)0 0 ¢	()OPOTOM0
	1人1-ค+

Unit 1A Reteach

Multiplying complex numbers.

Whenever i has an exponent, simplify it.

$$
i^{2}=-1
$$

$(5)(3 i)$
$(5 i)(3 i)$

Unit 1A Reteach
Multiplying complex numbers.
Whenever i has an exponent, simplify it.

$$
i^{2}=-1
$$

$(5)(2+3 i)$

$$
(5 i)(2+3 i)
$$

Practice

Simplify.

1) $7(-6 i)$
2) $(4 i)(8 i)$
3) $7(-6 i)$
$-42 i$
4) $(4 i)(8 i)$
-32
5) $(-i)(6+7 i)$
6) $(8+7 i)(-4+5 i)$
7) $\begin{gathered}(-i)(6+7 i) \\ 7-6 i\end{gathered}$
8) $(8+7 i)(-4+5 i)$ $-67+12 i$

Factor quadratics with algebra tiles
Look for patterns in the algebra tiles to factor quadratics algebraically.

Review: Zero Product Property

$$
\begin{aligned}
& \text { If } A \cdot B=0 \\
& \text { Then } A=0 \quad \text { or } \quad B=0
\end{aligned}
$$

Practice:

$$
x(2 x-3)=0 \quad(x+4)(x-3)=0
$$

Review: Multiplving Polvnomials $(x+2)(x+1)$

Strategy 1: Distribute (PB\&J Sandwich)

Strategy 2: F O I L

Strategy 3: Area Model \square
Use the area model and one other method to simplify the expression above. Show each step.

$(x+2)(x+1)$

Algebra Tiles

With the dimensions given above, what is the area of each tile?

Algebra Tiles

Sort your algebra tiles to represent $x^{2}+3 x+2$

Now rearrange them to form a perfect rectangle

How long is each side? What is the area?

Use algebra tiles to factor the following quadratics:

$$
x^{2}+5 x+4
$$

$x^{2}+6 x+8$

$x^{2}-7 x+10$

$$
x^{2}+5 x+4 \longleftarrow \square(x+4)(x+1)
$$

$$
x^{2}+6 x+8
$$

\square
$x^{2}-7 x+10$

Relationships: constant and linear terms

Both arrangements represent the same area: $x^{2}+6 x+8$ but only one makes a perfect rectangle.

Why is the arrangement of the green rectangles important?
How does the arrangement of the green rectangles relate to the total number of yellow squares?
$x^{2}+6 x+8$

$(x+4)(x+2)$

Try this...
$x^{2}-7 x+10$

$(x-5)(x-2)$

Noticing more patterns

$$
x^{2}+12 x+32
$$

What are the factors of 32?

Which ones will add up to 12?

Noticing more patterns

$x^{2}-8 x+12$

What are the factors of 12 ?

Which ones will add up to -8 ?

Noticing more patterns

$$
x^{2}+4 x-12
$$

What are the factors of -12 ?

Which ones will add up to 4?

Noticing more patterns

$$
x^{2}-25
$$

What are the factors of -25 ?

What should they add up to?

Think of the quadratic: $x^{2}+6 x+8$
In factored form: $(x+4)(x+2)$

How are the two different forms related? Where in the figure do you see each form?

How does factoring relate to the area model of multiplication?

Putting it all together...

Solve the equations

$$
x^{2}+6 x-16=0
$$

$$
x^{2}+10 x+5=-16
$$

\qquad © 2015 Kuta Software LLC.

1B. 4 Factoring and Solving by Factoring

\qquad Period

Factor each completely.

1) $p^{2}+10 p+16$
2) $b^{2}-11 b+24$
3) $n^{2}-5 n-50$
4) $a^{2}+3 a-18$
5) $x^{2}+6 x+8$
6) $x^{2}+5 x+4$
7) $k^{2}+k-72$
8) $x^{2}-7 x-18$
9) $5 n^{2}+30 n+25$
10) $5 x^{2}+55 x+90$
11) $2 m^{2}+4 m$
12) $2 b^{2}+20 b+42$

Solve each equation by factoring.

13) $(7 v+1)(v-6)=0$
14) $(b-5)(b+8)=0$
15) $v^{2}-25=0$
16) $p^{2}-2 p-8=0$
17) $p^{2}+11 p+31=3$
18) $x^{2}-8 x-3=-3$
19) $8 p^{2}-16 p-277=3$
20) $5 n^{2}+25 n-7=-7$
